

ECONOMY- WIDE IMPACTS

- LESSONS OF WEATHER DELIVERABLE 1

Valentin Przyluski and Stéphane Hallegatte (CIRED) with

Rodica Tomozeiu, Carlo Cacciamani, Valentina Pavan (ARPA-ER); Claus Doll (ISI)

OUTLINE

Objectives of WEATHER WP1

Methodology

Results and Discussion

WEATHER AND « ECONOMY-WIDE LOSSES »

WHAT ARE ECONOMY-WIDE LOSSES?

 Economy-wide losses: losses in other sectors caused by the direct losses occured in the transport system

- Idea of « indirect costs» in the case of transport
 - Indirect costs: emergency costs, business interruptions, reconstruction costs, LT effect
 - Transport as public good is a particular « multiplier effect »: what is the extra amount of indirect costs that can be attributed to transport system failures?

DIRECT AND INDIRECT LOSSES (FROM HALLEGATTE, 2008)

Direct losses:

- Casualties and injuries
- Direct economic losses (i.e., value of what has been destroyed or damaged)

Indirect losses:

- Emergency costs (Katrina: \$8 billion)
- Demand surge (larger repair costs due to lack of workers and materials)
- Business interruption, supply-chain disruption, and propagations
- Lost production during the (long) reconstruction period
- Macro-economic feedbacks (e.g., through loss of jobs and tax revenue)
- Long-term adverse consequences on economic growth (developing countries)

Other costs:

- Political destabilization (developing countries)
- Psychological trauma and social network disruption

Indirect losses are highly nonlinear

OBJECTIVES

- Economy wide losses due to extreme weather related transport system failures
 - Annual losses in current situation
 - Climate change scenarios (2050, 2100): frequency, intensity, types?
 - From meteorological indicators to macroeconomic indicators through physical constraint (transport system failures)

ASSUMPTIONS RELATED TO THE MODELLING EXERCISE

- What is an extreme weather event (definition) ?
 - Functional point of view (disruption) vs. meteorological
 - Disruption profile (intensity / time)
 - 9 types of disasters profiles
- Questions of scale
 - Natural Disasters tend to be regional
 - They are of different types and of different location (european frequency)
 - Regional losses are also european losses (in absolute figures, not in VA losses…)
 - Stereotypical region : how to synthetize a regional economy?
- Climate change scenarios : how to consider CC?

METHODOLOGY

- Three baseline scenarios (without natural disaster): no direct costs, 0,01% and 0,1%
- Indirect losses due to transport = Results with natural disasters – baseline (for each scenarios)
- Disruption profiles per mode of transport and substitution between modes as adaptation measure
- Annual losses computed with EM-DAT frequency: heavy being the highest 10%
- Sensitivity analysis...

DESCRIPTION OF ARIO MODEL

ARIO 3.0 (Hallegatte, 2008 on Katrina)

- Input-Output with flexibility between sectors (through prices)
- Reconstruction constraints (taken on normal consumption pattern) and specificity (types of sectors)
- Demande surge (and stimulus effect…)
- Ripple effects across sectors through time : non linearity of indirect costs (/direct costs)

ARIO 4.0 (2011, developed for Weather)

- Shorter time-step
- Inventories as adjustment mechanism

ARIO 4.1 T (2011, developed for Weather)

- Transport sector decomposition
- Introduction of transport constraints and adaptation mechanism
- Introduction of disaster profile for transport in the simulation of natural disasters

3. RESULTS

DISRUPTION PROFILE PER DISASTER

Disruption profile per transport mode through time – Disaster 2

ARIO OUTPUT PER DISASTER TYPE

Annual Losses per type of disaster = Losses ario (disaster) x em-dat frequency

Type of Extreme Weather Event	Estimates of transport-related indirect costs, for three scenarios of direct costs, in millions Euros			
	Lower	Medium	Higher	
Light Heatwave	0	0	0	
Heavy Heatwave	18	19	20	
Light Winter	0	0	0	
Heavy Winter	0	0,090	0,159	
Light Landslides/Alpine Hazards	9	9	70	
Heavy Landslides/ Alpine Hazards	25	28	28	
Light Flood	0	42	72	
Heavy Flood	111	121	122	
Storms	129	139	140	
Total	291	359	452	

CLIMATE CHANGE « WHAT IF » SCENARIOS

DISCUSSION

- Limits
 - Limits of the main assumptions
 - Limits of the model
 - Limits of transport description in the model
 - Limits of current extremes description
 - Limits of the interface extreme events transport disruption
 - Limits of climite change « What if »
- → these are clearly stated at each step of the modelling exercice
 : ARIO has not been overfitted, and intends to avoid being a
 « black box »
- Discussion

THANK YOU FOR YOUR ATTENTION!

PRZYLUSKI@CENTRE-CIRED.FR

APPENDIX A/ FROM DISASTER TO TRANSPORT DISRUPTION

Type of extreme	N°	Qualification	Description		
	1	light	Uniforme reduction by 15% of capacity during 1 week		
Heatwave (temperature + consequence	2	heavy	Uniform reduction by 15% of capacity during 3 weeks		
	3	light	Uniform reduction by 10% of capacity during 3 days		
Winter (temperature + consequences 4 heavy Uniform reduction by 40% of capacity durin			Uniform reduction by 40% of capacity during 1 week		
	5	light	Reduction by 10% during three days, and then evolving from 2% to 0% in 6 months		
Windstorms/Alpine Hazards/	ns/Alpine Hazards/ 6 heavy Reduction by 40% during three days, and then evolving from 5% to 0% in 1 year		Reduction by 40% during three days, and then evolving from 5% to 0% in 1 year		
	7	light	Reduction by 5% during three days, and then evolving from 3% to 0% in 3 months		
Floods	8	heavy	Reduction by 25% during three days, and then evolving from 10% to 0% in less than a 1 year		
Storms	9		Reduction by 40% during three days, and then evolving from 5% to 0% in less than a year		

APPENDIX B / Substitution MATRIX

	Road	Air	Rail	Water	Other
Road	0	0,25	0,25	0,25	0,25
Air	0,1	0	0,1	0,1	0,1
Rail	0,2	0,1	0	0,1	0,1
Water	0,1	0,1	0,1	0	0,1
Other	0,1	0,1	0,1	0,1	0